If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y^2-121y=0
a = 1; b = -121; c = 0;
Δ = b2-4ac
Δ = -1212-4·1·0
Δ = 14641
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{14641}=121$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-121)-121}{2*1}=\frac{0}{2} =0 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-121)+121}{2*1}=\frac{242}{2} =121 $
| (5x)=(3x+19) | | (10)-(x)=65/40 | | 8x+10x−15=−3x+36 | | 12x+3=-1x-8 | | 2^a/2a=16 | | 3(m+3)-5=2(m+2) | | 4b-12=2b-6 | | 3(x-5)+6x=4(2x+3) | | 7a-14=24 | | 62-x=123 | | 62-x=1223 | | 3(x-5)+6x=4(2x+3) | | 5-2=6x-10 | | 4x-40°+40°=180° | | 5+2=6x-10 | | 121=17+3x | | -2x-4=-9+3x | | 2x=9x-6 | | F(2x)=9x-6 | | F(2x)=9x | | 6/36=x/48 | | 4x+40°+40°=180° | | (1)/(2)(10+12n)=(1)/(3)(15n+5) | | 5x-20=8x+7 | | 2m-3=6m-9 | | 5(b-2)=5 | | 4(x-3)/3=8 | | 3(2+s)=6 | | -2(x-4)/5=6 | | W*2w=50 | | 1/3(3x+6)+2x=36 | | 8x-13=3,5 |